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Abstract—The application of a blanking nonlinearity to cope
with impulsive interference is a common approach in OFDM
systems. The choice of the amplitude threshold to decide whether
a received sample is blanked, heavily affects the performance
of the entire transmission. As a matter of fact, the perfect
blanking threshold strongly depends on the characteristics of the
interference. In previous publications this perfect threshold has
been derived, given knowledge about the interference statistics.
In general, however, no reliable information about the interfer-
ence statistics is known at the receiver side. In this paper a
practical method for calculating an adaptive blanking threshold
to maximize the signal-to-interference-and-noise ratio after the
blanking nonlinearity is proposed. The calculation is based on the
distribution of the amplitude of the received signal at the OFDM
receiver. Simulation results show only a negligible performance
degradation when comparing the proposed method to the case
where the theoretically derived perfect threshold is applied for
blanking.

I. INTRODUCTION

In the past years, orthogonal frequency division multiplex-

ing (OFDM) has been established as modulation technique that

is employed in numerous systems for wireless and wired com-

munications, for example digital video broadcasting (DVB)

or powerline communications (PLC). It provides several ad-

vantages compared to single-carrier systems, such as spectral

efficiency, robustness to multipath propagation, and its efficient

implementation by a fast Fourier transform (FFT), just to

mention a few.

Besides multipath propagation effects and additive white

Gaussian noise (AWGN), these systems are often exposed

to impulsive interference, e.g. originating from switching

processes on the power distribution network or from the

ignitions of passing vehicles, leading to a degradation of

the system performance [1]. Due to its non-Gaussian nature,

this interference has to be represented by specific impulsive

interference models [2]–[4].

For moderate impulsive interference power and infrequent

occurrence, OFDM systems can cope well with the interfer-

ence, as it is spread among several sub-carriers of an OFDM

symbol. However for frequent occurrence or high interference

power, this spread will turn into a disadvantage [2] and

interference mitigation techniques have to be implemented.

Many approaches to mitigate the impact of impulsive

interference are based on applying a memoryless blanking

nonlinearity (BN) at the receiver input, prior to the OFDM

demodulator, such as [5]–[8].

In our investigations we will focus on this BN since it is easy

to implement, while providing a remarkable performance gain,

compared to a conventional OFDM receiver [6]. The crucial

parameter for setting up the BN is the blanking threshold

which determines whether a received sample is blanked or

not. This value has to be chosen properly, as it is a trade-

off between removing interference and preserving the useful

OFDM signal. In [9] it was shown that a perfect threshold

always exists, which depends on the parameters of the im-

pulsive interference. Furthermore, an expression for obtaining

this perfect blanking threshold was derived. However, these

considerations are based on knowledge about the impulsive

interference statistics, which, in general, is not known at the

receiver side.

In this paper, we propose a method for calculating an

adaptive blanking threshold without any information about

the actual impulsive interference. The calculation is based on

measurements of the amplitude distribution of the received

signal at the OFDM receiver. The obtained threshold is optimal

in terms of maximizing the signal-to-noise-and-interference

ratio (SINR) after the BN. Simulation results indicate that

the perfect threshold is nearly achieved and only a negligible

performance loss is introduced.

In addition, we will examine the influence of the FFT

size on the performance of our proposed algorithm. Finally,

we will show that, depending on the interference model, the

calculation of a separate threshold for each OFDM symbol

is more appropriate compared to an average threshold for

multiple OFDM symbols. Our results can be directly applied

to practical applications, when applying a BN.

The paper is organized as follows. In Section II, the con-

sidered system model is introduced. In Section III, we present

our algorithm for deriving the adaptive blanking threshold.

This is followed by Section IV, where the performance of our

proposed algorithm is compared to result with the theoretically

perfect threshold from [9]. In Section V, we address the

influence of the FFT size and the chosen interference model.

Finally, the paper is concluded in Section VI.
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Fig. 1. System model for an OFDM transmission with a blanking nonlinearity.

II. SYSTEM MODEL

For our investigation we consider the digital baseband

model from Fig. 1. A stream of source bits enter a coding and

modulation block, incorporating channel coding of the source

bits and mapping onto modulation symbols using a quadrature

phase shift keying (QPSK) modulation alphabet. N modulated

symbols Sk, k = 0, 1, ..., N − 1 are arranged in a vector1

Sp = [Sp,0, Sp,1, ..., Sp,N−1]
T to form an OFDM symbol with

the OFDM symbol denoted by a subscript index p. The latter

is then transformed into the time domain using an inverse

fast Fourier transform (IFFT) to obtain the transmit vector

sp = [sp,0, sp,1, ..., sp,N−1]
T . As we focus only on an additive

channel model, the common insertion of a guard interval (GI)

to prevent inter-symbol interference (ISI) is, without loss of

generality, omitted for simplicity.

The transmit vector passes an additive transmission channel,

including AWGN np = [np,0, np,1, ..., np,N−1]
T and impul-

sive interference ip = [ip,0, ip,1, ..., ip,N−1]
T . Finally, the

model of the received signal can be represented as

rp = sp + np + ip, (1)

where rp = [rp,0, rp,1, ..., rp,N−1]
T denotes an N -point vector

of received samples. The signals sp, np, and ip are assumed

to be statistically independent; we further assume without

loss of generality that the power of the transmitted signal is

normalized to one, i.e. E
{

|sp,l|
2
}

= 2σ2
s = 1, with l denoting

the sample index in the time domain. When using a normalized

FFT, E
{

|Sp,k|
2
}

= 1 holds as well. In this context k is

defined as the sub-carrier index. For the average power of

the AWGN samples it holds N0 = 2σ2
n. The parameters σ2

s

and σ2
n are the component-wise variance of the transmit and

the noise signal, respectively.

In this study, we consider two types of impulsive interfer-

ence. The first is a Bernoulli-Gaussian process [2] defined as

ip,l = bp,l · gp,l, (2)

where bp,l is the Bernoulli process and the distribution of

the samples gp,l is characterized by a zero mean, complex

Gaussian process. The impulsive interference is described by

the probability P(bp,l = 1) = β and the component-wise

variance of gp,l, σ
2
g = 1/2E

{

|gp,l|
2
}

. This scheme has already

been used in various studies, e.g. [2], [9] to assess the influence

of impulsive interference.

As investigated in [4], many sources of impulsive noise

do not occur as single peaks, as described by the Bernoulli-

Gaussian process, but rather as bursts with a certain duration.

1Herein, column vectors are written as bold letters; capital letters denote
signals in the frequency domain, small letters time domain signals.

This can be modeled by Gated-Gaussian noise [4], which was

also considered for the investigations in [10]. Like for the

Bernoulli-Gaussian process, the Gated-Gaussian process can

be described by (2). For Gated-Gaussian noise, the term gp,l is

also characterized by a zero mean, complex Gaussian process

with the same definition of the variance σ2
g . In contrast to

the Bernoulli-Gaussian model, the occurrence of the Gated-

Gaussian noise is described by two variables. The first is the

fraction of time of an OFDM symbol µ, during which the

Gated-Gaussian noise occurs. This translates into Nµ affected

samples in the digital baseband model, calculated by

Nµ = ⌊µN + 1/2⌋. (3)

Obviously, these samples occur as a contiguous block. As the

noise burst may only occur rarely, a second parameter ν is

defined, which determines that only every ν-th OFDM symbol

is affected by an interference burst. This writes mathematically

bp,l =











1, if pmod ν = 0 ∧

l = l0,p, l0,p+1, ..., l0,p+Nµ−1,

0, else,

(4)

with l0,p being randomly chosen numbers from

[0, 1, ..., N−Nµ].
In order to remove high peaks of the impulsive interference,

a BN is applied which is described later on. Following the

nonlinearity, the blanked signal yp = [yp,0, yp,1, ..., yp,N−1]
T

is transformed into the frequency domain by means of

an FFT which results in the frequency domain signal

Yp = [Yp,0, Yp,1, ..., Yp,N−1]
T . Finally, Yp passes a soft-

demodulator to obtain soft values of the encoded bits, which

are fed into the decoder, leading to estimates of the transmitted

source bits.

The BN is described by the memoryless nonlinear mapping

f : C → C specified as follows:

yp,l = f(rp,l) =

{

rp,l, if |rp,l| < TBN,

0, else,
(5)

where TBN is the blanking threshold. The perfect blanking

threshold value depends on the interference model. In former

investigations [7], [11], [12], a fixed predefined threshold is

selected, which is chosen according to the expected interfer-

ence situation. In contrast, we propose to apply an adaptive

threshold, based on the amplitude distribution of the received

samples. It is calculated such as to maximize the SINR after

the BN. Therefore, we will show how this SINR can be

estimated, in dependence of the blanking threshold. In what

follows, we describe in detail the algorithm for calculating the

adaptive threshold.



III. PROPOSED ALGORITHM

In this section, we show how an optimal threshold for

the BN can be calculated. The principle of the algorithm

is to estimate the SINR after the BN, which depends on

the blanking threshold TBN. By maximizing this SINR, i.e.,

searching for the TBN which leads to the highest SINR, one

obtains the optimal blanking threshold

TBN,opt = arg (max ( SINR(TBN))) , TBN > 0. (6)

For deriving an expression for the SINR(TBN), we will first

introduce two parameters.

The first is the expectation value of the remaining impul-

sive interference power PI(TBN) at a sub-carrier after the

BN. Obviously, there will be received samples comprising

impulsive interference, however with an amplitude below the

threshold. These samples cause the remaining interference

power PI(TBN).
Secondly we introduce the factor K(TBN), which is defined

as the ratio of the expected sub-carrier OFDM and AWGN

power after and before the BN. In [13] it was shown that

the power of the OFDM signal at a certain sub-carrier when

applying a BN consists of two parts. The first part is the attenu-

ated useful signal power of the transmitted symbol at this sub-

carrier. The second part is undesired inter-carrier interference

(ICI) from the other sub-carriers, which is induced by the BN.

In [13] it was also shown that the power of the useful part

is K2(TBN) and the ICI power is K(TBN)(1−K(TBN)) for

E
{

|Sp,k|
2
}

= 1.

Keeping the different parts of the signal after the BN in

mind, the sub-carrier SINR after the BN can now be calculated

by

SINR(TBN) =

=
K2(TBN)

K(TBN)N0 +K(TBN)(1−K(TBN)) + PI(TBN)
. (7)

The numerator consists of the remaining useful OFDM

signal power. The denominator comprises the attenuated noise

term, ICI which is induced by the BN, and the remaining

impulsive interference. Note that (7) was already derived

in [13], however without PI, which was neglected in this

context.

The calculation of the SINR according to (7) is based on

some assumptions, which will be summarized in the following.

The AWGN and the impulsive interference are still white after

the BN, i.e., comprise a flat power spectral density since

the remaining AWGN and impulsive interference samples

are still uncorrelated. Furthermore, both can be assumed to

be Gaussian distributed in the frequency domain, even for

small numbers of impulsive interference samples and for

both considered interference models. This is explained by

the noise bucket effect in [14]. In [13] it is shown that

the ICI in the frequency domain is Gaussian distributed for

sufficiently large numbers of sub-carriers N and uncorrelated

blanking positions, i.e. Bernoulli-Gaussian noise. For Gated-

Gaussian noise, it can be still assumed as an approximation.

The expectation value of the useful OFDM signal power after

the BN is constant for all sub-carriers, since on average each

remaining sample comprises equal contributions from all sub-

carriers.

For obtaining the SINR according to (7), we will now show2

how to calculate PI. This is followed by the derivation of the

factor K.

Since the interference conditions may change over time

we consider L OFDM symbols, comprising NL = L · N
samples, for calculating an adapted blanking threshold for this

certain period of time. The choice of L depends on the type

of interference and how fast the interference conditions vary.

This issue will be discussed in Section V.

The following considerations are based on the assumption,

that the OFDM signal in the time domain can be modeled

as a complex Gaussian process with a Rayleigh distributed

amplitude, which is valid for sufficiently large numbers of

sub-carriers N [15].

A. Calculation of Remaining Interference Power PI

For obtaining the remaining interference power PI we will

first calculate the expectation value of the total remaining en-

ergy Ew/I after the BN when blanking with a certain threshold

TBN. The probability density function (pdf) of the amplitudes

of the received signal is denoted by g(a) with amplitude

a = |rp,l|. Since in general the interference conditions, i.e.

g(a), are not known at the receiver, we propose to approximate

g(a) by the actual amplitude distribution of the NL considered

samples. The more OFDM symbols are taken into account, the

more meaningful the approximated amplitude distribution will

become, leading to a better estimate of the SINR. However,

if the interference situation is differing significantly from one

OFDM symbol to the next, separate thresholds for each OFDM

symbol, i.e. L = 1, are more appropriate. This issue will

be addressed in Section V. Now, based on g(a), the total

remaining energy Ew/I after the BN can be calculated by

Ew/I = NL

∫ TBN

0

a2g(a) da. (8)

The total number of non-blanked samples NNB within the L
considered OFDM symbols is obtained by

NNB = NL

∫ TBN

0

g(a) da. (9)

Next, we are interested in the total energy Ewo/I of these NNB

samples without interference, i.e. the total remaining OFDM

and AWGN signal energy after blanking. The exact value for

Ewo/I cannot be calculated without any knowledge about the

interference. However, it can be approximated based on the

known amplitude pdf of the OFDM and the AWGN signal, i.e.,

if no interference is present. It is described by the Rayleigh

distribution

f(a) =
a

σ2
e−

a
2

2σ2 , a ≥ 0, (10)

2In the following, we will write for clearness PI and K instead of PI(TBN)
and K(TBN).



with the constant value σ =
√

1/2 + σ2
n. The expectation

value of the power Pwo/I of a sample below TBN without

interference is now obtained when dividing the total energy

by the number of respective samples. This is computed as

Pwo/I =
NL

∫ TBN

0
a2f(a) da

NL

∫ TBN

0
f(a) da

. (11)

Finally, to determine the total energy Ewo/I of NNB samples

we have to multiply the average power Pwo/I with the number

of samples NNB:

Ewo/I = NNB · Pwo/I. (12)

This approximation assumes that no sample with an OFDM

signal and AWGN signal amplitude below TBN, and each

sample with an OFDM signal and AWGN signal amplitude

above TBN, is blanked. Apparently this is not true, since

the impulsive interference may enlarge or reduce received

sample amplitudes above or below TBN. However, for a rare

occurrence of impulsive interference or σg ≫ σn and σg ≫ σs

this approximation is justified since the number of remaining

samples after blanking comprising impulsive interference is

small compared to the number of samples containing no

impulsive interference.

As the impulsive interference spreads equally over all sub-

carriers, the expected value for the remaining interference

power PI at a sub-carrier is then obtained by

PI =

(

Ew/I − Ewo/I

)

NL
. (13)

B. Calculation of Attenuation Factor K

Now we go on by calculating the factor K. We defined K as

the ratio of the expected sub-carrier OFDM and AWGN power

after and before the BN. Obviously, the sub-carrier OFDM

and AWGN power before the BN is given by (1 +N0). The

total remaining OFDM and AWGN signal energy after the

BN Ewo/I has been calculated in (12). Since this total energy

spreads equally over all sub-carriers, the remaining OFDM and

AWGN power at a certain sub-carrier is obtained by dividing

Ewo/I by the number of considered samples NL. Thus K is

computed as

K =
Ewo/I

NL(1 +N0)
. (14)

Note that in [13], K is defined as the ratio between the

number of non-blanked samples per OFDM symbol and the

number of total samples per OFDM symbol N . However, this

is only an approximation when assuming that the blanking

of a sample only depends on the impulsive interference, but

not on the amplitude of the OFDM and AWGN signal. This

approximation is justified if σg ≫ σn and σg ≫ σs.

Taking (13) and (14) into account, we are now able to cal-

culate the SINR based on (7). The optimal blanking threshold

TBN,opt is then obtained by finally applying (6). We will now

go on by verifying the effectiveness of our proposed algorithm.
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Fig. 2. SINR at the output of the BN versus threshold TBN for Bernoulli-
Gaussian noise, SNR = 25 dB, SIR = −15 dB.

IV. COMPARISON WITH PERFECT THRESHOLD

In this section, we will compare our proposed algorithm to

the theoretically derived perfect calculation from [9] in terms

of the SINR estimation, the determination of the threshold,

and the influence on the performance by bit error rate (BER)

simulations.

In Fig. 2, the SINR at the output of the BN is depicted versus

TBN, for Bernoulli-Gaussian noise with different values of β.

We selected N = 1024, QPSK as modulation scheme, and

no channel coding. The amplitude pdf g(a) is approximated

by the samples of L = 500 OFDM symbols at a time. As

mentioned in Section II we consider only AWGN, but no

fading or multipath channel is investigated. In the following,

the signal-to-noise ratio (SNR) and the signal-to-interference

ratio (SIR) are defined as

SNR =
1

N0

, (15)

SIR =
1

2σ2
g

. (16)

The results are compared to the theoretically perfect SINRperf ,

which is calculated as in [9]. Note that the calculation of

SINRperf is based on the knowledge of the interference

parameters, i.e., β and σg. In contrast, our approach does

not require the knowledge of the interference parameters.

The estimated SINR matches the perfect case well and is

only slightly above SINRperf . In particular the position of

the maximum is nearly the same with the perfect and our

calculation, indicating a good estimate of TBN,opt. This issue

will be analyzed in more detail in the next paragraph.

Next, we will examine the accuracy of the blanking thresh-

old calculation. In Fig. 3, the calculated optimized threshold

TBN,opt and the theoretically perfect threshold TBN,perf are

plotted versus the SIR for SNR = 25dB. The other parameters

are the same as above. Both TBN,opt and TBN,perf are de-

rived by maximizing the respective SINR. Besides Bernoulli-

Gaussian noise we also consider Gated-Gaussian noise with

µ = 0.1 and ν = 1, corresponding to Bernoulli-Gaussian noise
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Fig. 3. Estimated and perfect blanking threshold versus SIR, SNR = 25 dB.

with β = 0.1 in terms of the average number of interference

samples. For Gated-Gaussian noise we obtain the same results

as for Bernoulli-Gaussian noise. This is not surprising since

the amplitude distribution does only depend on the number of

interference samples but not on its positions, i.e., randomly

spreaded or block-wise. Compared to the theoretically perfect

threshold, TBN,opt is slightly above TBN,perf . The little mis-

match is probably a result of the approximation, which is used

for calculating (12).

To evaluate the impact of the threshold mismatch on the

system performance, the BER is selected as measuring metric.

Therefore the BER is plotted versus the SIR in Fig. 4 for the

same parameter set as above, with β = 0.1 for Bernoulli-

Gaussian and µ = 0.1 and ν = 1 for Gated-Gaussian noise. To

illustrate the influence of a poorly chosen blanking threshold,

we added results for the case of a fixed threshold with different

pre-defined values. It turns out that the little mismatch of

TBN,opt compared to TBN,perf causes a negligible performance

degradation for Bernoulli-Gaussian noise. For Gated-Gaussian

noise, the BER is slightly below the Bernoulli-Gaussian case,

especially for small SIR values. This is a consequence of

the different types of interference models. While for Gated-

Gaussian noise in each OFDM symbol exactly the same num-

ber of interference samples occur, Bernoulli-Gaussian noise

defines only an occurrence probability leading to OFDM sym-

bols comprising more interference samples than on average

would occur. The latter leads to significantly more bit errors,

compared to a fixed number of interference samples. This

explains the inferior performance of Bernoulli-Gaussian noise

compared to Gated-Gaussian noise. In contrast to an estimated

threshold, a fixed threshold leads to a noticeable performance

loss. This will become a severe problem especially when the

interference situation changes during a transmission. In this

case, our proposed threshold calculation performs superior,

since for each set of L OFDM symbols a separate threshold is

calculated. In other words the threshold calculation is adapted

to each set of L OFDM symbols.

Note that in general the BER is getting lower when the SIR

is getting smaller, i.e., the interference power is getting larger.
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Fig. 4. Uncoded BER performance for fixed, estimated, and perfect blanking
threshold versus SIR, SNR = 25 dB.

This can be explained by the fact that a larger interference

power leads to a higher blanking threshold, which reduces the

probability of falsely blanking peaks of the OFDM signal.

V. INFLUENCE OF INTERFERENCE AND FFT SIZE

Next, we will examine the dependency on the threshold

calculation from the interference scenario. In particular, we

are interested in the influence of the selection of L on

the performance. In addition, we will have a look on the

dependency of the performance on the FFT size N .

In our simulation we apply Gated-Gaussian noise with

SIR = −15 dB, µ = 0.2 and ν = 10. This model is

compared to Bernoulli-Gaussian noise with SIR = −15 dB
and β = 0.02, which leads to the same number of impulsive

interference samples on average. In Fig. 5, we compare the

BER for both interference scenarios. For deriving the blanking

threshold, we implemented an OFDM symbol-wise threshold

calculation (L = 1) and a joint threshold calculation for 500

OFDM symbols (L = 500). Both, N = 1024 and N = 64,

QPSK modulation, and no channel coding were applied.

In general, the Bernoulli-Gaussian noise leads to a remark-

ably lower BER since the interference samples are spread over

the received samples and do not appear bursty as in the Gated-

Gaussian case. This is more suitable for the demodulation

of the signals. One should mention that this drawback could

be, at least partly, rectified by applying a bit interleaver in

conjunction with channel coding. However, this would also

blur the differences between an OFDM symbol-wise and a

jointly blanking threshold calculation. Thus, it is omitted in

our investigations.

As expected for Gated-Gaussian noise, i.e., strongly varying

interference from one OFDM symbol to the next, an OFDM

symbol-wise calculation leads to better results compared to the

joint calculation. This does not hold for Bernoulli-Gaussian

noise. In this case, the interference is nearly the same in each

OFDM symbol and the joint threshold calculation benefits

from a more reliable amplitude distribution of the received

signal when taking more samples into account. Accordingly,

in this case the joint calculation outperforms the symbol-wise
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calculation. The effect holds for both small and large FFT

sizes.

For Bernoulli-Gaussian noise the FFT size has a strong

impact on the BER performance. It degrades significantly

when reducing N , both for small and large values of L.

However, this is not particularly caused by a poor estimation

of the blanking threshold. It rather occurs since assumptions

concerning the Gaussian distribution of the remaining inter-

ference and induced ICI are no longer valid for small values

of N . This behavior was also observed in [9].

VI. CONCLUSION

In this paper, we present a new method for optimizing the

threshold for a blanking nonlinearity in OFDM systems. The

algorithm does not depend on any knowledge of the impulsive

interference the system is exposed to. We derive an expression

for the threshold dependent SINR after the blanking nonlinear-

ity. Its calculation is based on the amplitude distribution of the

received samples. The expression for the SINR is maximized

to obtain the optimal threshold. Simulations show that the

performance loss compared to the theoretically derived perfect

threshold is negligible. In addition, we also evaluated the

influence of the FFT size and of the interference scenario on

the performance of the proposed algorithm. It became clear

that for Gated-Gaussian noise a separate threshold calculation

for each OFDM symbol is superior, while for Bernoulli-

Gaussian noise, especially for small FFT sizes, the threshold

should be calculated jointly for multiple OFDM symbols.
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