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Abstract—In this paper, we analyze the influence of a blanking
nonlinearity onto OFDM systems in detail. We will derive closed-
form expressions for the signal degradation and the interference,
which is introduced by the blanking nonlinearity. The theoretical
results will be validated by simulations, which illustrate the
detrimental blanking influence in a descriptive way. In addition,
it will be shown how the results affect an OFDM receiver and
how the receiver can be adapted to the blanking nonlinearity.
Simulation results confirm a gain of 3 dB at BER = 1 ⋅ 10−3 for
a 16QAM transmission, when adapting the receiver accordingly.

I. INTRODUCTION

In the past years, orthogonal frequency-division multiplex-
ing (OFDM) has been established as a powerful and spectrally
efficient modulation technique that is employed in numerous
systems for wireless and wireline communications like digital
audio broadcasting (DAB) [1], digital video broadcasting
(DVB) [2], and powerline communications (PLC) [3]. All of
these systems are often exposed to impulsive interference,
e.g. originating from switching processes on the power dis-
tribution network or from the ignitions of passing vehicles,
leading to a degradation of the system performance [4]. The
interference situation is even more severe for the recently
proposed candidate for the future L-band Digital Aeronautical
Communications System (L-DACS1) [5].

For a moderate impulsive interference power and infrequent
occurrence, OFDM systems can cope well with the interfer-
ence, as it is spread among several subcarriers of an OFDM
symbol. However for frequent appearance or high interference
power, this spread will turn into a disadvantage [6] and
interference mitigation techniques have to be implemented.

Conventional approaches to mitigate the impact of pulsed
interference are based on applying a memoryless nonlinear-
ity at the receiver input, prior to the conventional OFDM
demodulator. The most common approaches are blanking or
clipping nonlinearities as well as combined blanking-clipping
nonlinearities [7]–[9].

In our investigations we will focus on the blanking non-
linearity (BN). Since we will investigate the effects of the
BN but not the capabilities of the BN itself, we will apply
no impulsive noise channel statistics [10], as it has been done
e.g. in [8]. This means we assume that in each OFDM symbol
a known number of samples are affected by impulsive noise
and all affected samples are detected and blanked. This will

help us to obtain reliable results about the performance of
the BN, depending on the number of blanked samples. Given
this premise, the influence of the BN onto the OFDM signal is
investigated in detail and described mathematically. The results
will be compared to the results obtained by the extended
Bussgang theorem [11], which is a general expression for
nonlinear influence. It will be shown that the BN can be
described by an equivalent distortion term, which makes it
easy to predict the capabilities of the OFDM system for an
expected fraction of blanks in the received signal.

Next to this theoretical analysis, we will verify our assump-
tions and derivations by simulations in Section IV, which
will show the good match of the equivalent noise term. In
Section V, we will finally demonstrate how the obtained results
can be employed to adapt OFDM receiver parts such as the
channel estimation block or the demodulation block, which
depend on channel statistics. Simulations will emphasize that
remarkable gains are achieved by adapting the receiver.

II. SYSTEM MODEL

For our investigation, we focus on a digital baseband model.
Consider the system model from Fig. 1. The information bits
𝐼𝑘 are coded by a rate 𝑟 = 1/2 convolutional coder to obtain
𝑈𝑘 and then mapped onto the symbols 𝑆𝑘. For modulation,
quadrature phase shift keying (QPSK) and quadrature am-
plitude modulation (QAM) are used. The subsequent OFDM
modulator transforms 𝑁 of these modulated symbols, i.e. the
column vector S = (𝑆0, 𝑆1, ..., 𝑆𝑁−1)

𝑇 into the time domain
via an 𝑁 -point inverse Discrete Fourier Transform (iDFT) and
one obtains s = (𝑠0, 𝑠1, ..., 𝑠𝑁−1)

𝑇 , which can be written
mathematically

s = 퓕−1 ⋅ S (1)

with the inverse Fourier matrix defined by

ℱ−1
𝑙,𝑘 =

1√
𝑁

𝑒2𝜋𝑗
𝑘𝑙
𝑁 , 𝑙, 𝑘 = 0, ..., 𝑁−1, (2)

with 𝑘 being the subcarrier index in the frequency domain and
𝑙 denoting the sample index in the time domain. A received
signal sample 𝑟𝑙 is obtained by adding an additive white
Gaussian noise sample 𝑛𝑙

𝑟𝑙 = 𝑠𝑙 + 𝑛𝑙, 𝑙 = 0, ..., 𝑁−1. (3)
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Fig. 1. System Model for OFDM transmission with blanking nonlinearity.

The power of the transmitted signal is normalized to 1, i.e.
𝐸
{∣𝑠𝑙∣2} = 2𝜎2

𝑠 = 1 and for the power of the AWGN holds
𝑁0 = 2𝜎2

𝑛, with 𝜎2
𝑠 and 𝜎2

𝑛 being the component-wise variance
of the respective signal.

At the receiver, a digital BN is applied to the signal in the
time domain. In our investigation, we blank a fixed number
𝑁ℬ of samples in each OFDM symbol, which complies with
the case that 𝑁ℬ impulsive noise samples occur in an OFDM
symbol, which are perfectly detected and blanked. This is,
strictly speaking, not a nonlinearity, as the blanks are chosen
randomly and not depending on the amplitude, it is rather
the emulation of a blanking nonlinearity. This will help us to
quantify the effects of the BN. The positions of the blanks
within an OFDM symbol are chosen randomly. The signal
after the BN is denoted by 𝑦𝑙. The blanking block is followed
by an OFDM demodulator for transforming the signal into the
frequency domain via an 𝑁 -point DFT and obtaining 𝑌𝑘. The
demodulator at the next stage calculates log-likelihood ratios
(LLR) 𝐿𝑈

𝑘 for the coded bits which are fed into the decoder
for obtaining estimates 𝐼𝑘 of the transmitted information bits.

III. INFLUENCE OF BLANKING NONLINEARITY

The impact of the BN on OFDM systems had been investi-
gated in [12]. Accordingly, the blanking will be described by
a windowing operation. The window function 𝑏𝑙 is a sampled
rectangular window that exhibits notches at those positions
𝑙 ∈ ℬ where the received signal is blanked. The number of
blanks in an OFDM symbol is given by 𝑁ℬ. Mathematically
this is described by

𝑦𝑙 = 𝑟𝑙 ⋅ 𝑏𝑙 (4)

with

𝑏𝑙 =

{
0 𝑙 ∈ ℬ
1 else.

(5)

This multiplication with a rectangular window leads to a
convolution with the corresponding spectrum in the frequency
domain. If no blanking occurs in an OFDM symbol, the
window length is exactly the DFT length 𝑁 , leading to a
convolution with a sampled si-function with a one at the
sampling index zero and zeros at the other samples, when
the sampling grid is normalized to the subcarrier spacing.
When blanking 𝑁ℬ arbitrary samples, the rectangular window

is subdivided into multiple windows, each comprising less
samples than the original one. This leads to wider si-functions,
with non-zero values at all samples. Thus the orthogonality
between the subcarriers gets lost and inter-carrier interference
(ICI) is induced. In addition, the amplitude at the sampling
index zero is attenuated, i.e. the useful signal power is reduced.
This concrete description is mathematically described by the
convolution of the received signal in the frequency domain 𝑅𝑘

with the Fourier transform of the blanking window 𝐵𝑘

𝑌𝑘 =
1√
𝑁

(𝑅𝑘 ∗𝐵𝑘)

=
1√
𝑁

𝑁−1∑
𝑝=0

𝑅𝑝𝐵(𝑘−𝑝)mod𝑁

=
1√
𝑁

𝑁−1∑
𝑝=0

(𝑆𝑝 +𝑁𝑝)𝐵(𝑘−𝑝)mod𝑁 , (6)

using the Fourier transform of (3). Next, we will split this
equation into a part containing useful information about the
𝑘th subcarrier, called 𝑆′

𝑘, and a part containing noise and the
induced ICI, which will be called distortion term 𝐷𝑘 in the
following,

𝑌𝑘 = 𝑆′
𝑘 +𝐷𝑘. (7)

As the modulated symbols at different subcarriers are statisti-
cally independent, 𝑆′

𝑘 only depends on 𝑆𝑘 and we can write

𝑆′
𝑘 =

1√
𝑁

𝑆𝑘𝐵0. (8)

According to (2), we define the Fourier transform by a
multiplication with a matrix, which entries are defined by

ℱ𝑘,𝑙 =
1√
𝑁

𝑒−2𝜋𝑗 𝑘𝑙
𝑁 , 𝑘, 𝑙 = 0, ..., 𝑁−1. (9)

Applied to the blanking window b = (𝑏0, 𝑏1, ..., 𝑏𝑁−1)
𝑇 we

obtain
B = 퓕 ⋅ b, (10)

with B = (𝐵0, 𝐵1, ..., 𝐵𝑁−1)
𝑇 . Given this equation and

keeping (5) in mind, we obtain immediately

𝐵0 =
𝑁 −𝑁ℬ√

𝑁
(11)

and finally for 𝑆′
𝑘

𝑆′
𝑘 =

1√
𝑁

𝑆𝑘

(
1√
𝑁

(𝑁 −𝑁ℬ)
)

= 𝐾 ⋅ 𝑆𝑘, (12)

with

𝐾 =

(
1− 𝑁ℬ

𝑁

)
. (13)

That means, the blanking leads to an attenuation of the useful
signal 𝑆𝑘, without changing its phase, since 𝐾 is a real factor.

For 𝐷𝑘, we obtain

𝐷𝑘 = 𝐾 ⋅𝑁𝑘 +
1√
𝑁

𝑁−1∑
𝑝=0
𝑝∕=𝑘

(𝑆𝑝 +𝑁𝑝)𝐵(𝑘−𝑝)mod𝑁 . (14)



Given a sufficient large number of subcarriers, we can assume
a Gaussian distribution for 𝐷𝑘. For determining the variance of
𝐷𝑘, we first have to determine 𝐸

{∣B∣2}. With (10) it follows

𝐸
{∣B∣2} = 𝐸

{∣퓕 ⋅ b∣2} = 퓕𝐸
{
bb𝐻

}퓕−1. (15)

Keeping in mind that the blanks are chosen randomly, it
becomes obvious that all entries on the main diagonal of the
matrix 𝐸

{
bb𝐻

}
are identical, as well as all other entries are

different, but constant. This writes mathematically

𝐸
{
bb𝐻

}
= 𝑐 ⋅ 1+ 𝑑 ⋅ I, (16)

with the matrix of ones 1 and the identity matrix I. The main-
diagonal values 𝑐 + 𝑑 correspond to the probability that a
sample is not blanked, as in the blanking case, 𝑏𝑙 is zero and
does not contribute to the expectation value. Thus we get

𝑐+ 𝑑 =
𝑁 −𝑁ℬ

𝑁
. (17)

With the same argumentation, the non-diagonal entries cor-
respond to the probability that two arbitrary samples are not
blanked, which writes mathematically

𝑐 =

(
2
2

) ⋅ ( 𝑁−2
𝑁−𝑁ℬ−2

)
(

𝑁
𝑁−𝑁ℬ

) =
(𝑁 −𝑁ℬ)(𝑁 −𝑁ℬ − 1)

𝑁(𝑁 − 1)
(18)

and consequently

𝑑 =
(𝑁 −𝑁ℬ)𝑁ℬ
𝑁(𝑁 − 1)

. (19)

This helps us to calculate 𝐸
{∣B∣2}

𝐸
{∣B∣2} = 𝑐

⎛
⎜⎜⎜⎜⎝
𝑁 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0
. . . 0

⎞
⎟⎟⎟⎟⎠+ 𝑑 ⋅ I (20)

leading to

𝐸
{∣𝐵𝑘∣2

}
= 𝑑 =

(𝑁 −𝑁ℬ)𝑁ℬ
𝑁(𝑁 − 1)

, 𝑘 ∕= 0. (21)

Now we are able to calculate the variance Var(𝐷𝑘), when
keeping in mind that the different noise contributions 𝑁𝑘 and
modulated symbols 𝑆𝑘 are uncorrelated. Besides, the signal
power is normalized to one, i.e. 𝐸

{∣𝑆𝑘∣2
}
= 1 and the noise

power is 𝐸
{∣𝑁𝑘∣2

}
= 2𝜎2

𝑛 and we obtain

Var(𝐷𝑘) = 𝐾22𝜎2
𝑛 +

𝑁 − 1

𝑁
(1 + 2𝜎2

𝑛)
(𝑁 −𝑁ℬ)𝑁ℬ
𝑁(𝑁 − 1)

= 𝐾22𝜎2
𝑛 + (1−𝐾)𝐾(1 + 2𝜎2

𝑛). (22)

Finally this allows us to derive a closed expression for the
SNR of 𝑌𝑘 in (7) after the BN

SNRBN =
Var(𝑆′

𝑘)

Var(𝐷𝑘)
=

𝐾2

𝐾 (1−𝐾) + 2𝜎2
𝑛𝐾

. (23)

2 4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

 

 

no blanks
5 blanks
15 blanks
70 blanks
equivalent SINR, 5 blanks, theory
equivalent SINR, 15 blanks, theory
equivalent SINR, 70 blanks, theory

Fig. 2. BER curves for different number of blanks for an uncoded
transmission.

The derived attenuation factor 𝐾 is not equal to the scaling
factor 𝐾0, which can be obtained by applying the extended
Bussgang theorem [11]. The definition of 𝐾0 is

𝐾0 =
𝐸 {𝑦𝑙𝑠∗𝑙 }
𝐸 {∣𝑠𝑙∣2} . (24)

That means that 𝐾0 is a constant expectation value, relying on
sufficient knowledge about the received signal, i.e. about the
impulsive noise channel. For the BN, it was derived in [8]. In
contrary, 𝐾 may vary from OFDM symbol to OFDM symbol
and can be calculated deterministically, only by looking at the
number of blanked samples. The consequence is that 𝐾0 can
be used to estimate the average performance loss of an OFDM
system, exposed to impulsive noise with known statistics,
whereas 𝐾 is a factor which can be employed for adapting
the OFDM receiver to the number of blanks, for each OFDM
symbol separately, as it will be explained later on.

IV. SIMULATION RESULTS

In this section, we will verify our assumptions concerning
the SNR after the BN by means of simulations. Especially,
the assumed Gaussian distribution of the distortion term 𝐷𝑘

has to be confirmed by simulations, as this assumption is only
valid for a sufficient large number of subcarriers and randomly
chosen blanks. In Fig. 2, bit-error-rate (BER) curves for an
uncoded transmission via an AWGN channel are plotted. For
the transmission, 𝑁 = 256 and QPSK modulation was chosen.
Beside the curves for a different number of blanks per OFDM
symbol, theoretical results are depicted. The theoretical values
were derived by a transmission over an AWGN channel with
the equivalent SNRBN given in (23) without any blanking. The
results confirm our assumptions concerning the distribution
and the variance of 𝐷𝑘, as the simulated curves match the
theoretical values very well for different number of blanks
per OFDM symbol. It is also remarkable that even for a very
small fraction of blanks, in our case 5/256, the degradation is
already 1 dB at BER = 1 ⋅ 10−3.
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Fig. 3. BER curves for different number of blanks for a coded transmission.

The same simulations have been performed for a coded
transmission with a 𝑟 = 1/2 convolutional code. The curves
in Fig. 3 show a similar behavior in comparison to the
uncoded ones, the theoretical curves fit well again. However
it points out, that for a small number of blanks, the SNR
loss is much smaller than in the uncoded case. Considering
again BER = 1 ⋅ 10−3 with blanking a fraction of 5/256, the
degradation is only 0.3 dB. This becomes clear by having a
closer look at (23). For a coded transmission, acceptable BER
are achieved for much smaller SNR values, i.e. higher noise
powers compared to the uncoded transmission. In this case
the denominator in (23) is governed by the noise term, as it is
large compared to 𝐾(1−𝐾). For higher SNR regions, like for
the uncoded transmission when looking at the same BER, the
ICI part 𝐾(1 − 𝐾) becomes significant and leads to greater
losses in the SNR.

Fig. 4 highlights this effect, where the SNR loss is plotted
versus the SNR and versus the number of blanks for 𝑁 = 256.
For low SNR values, the SNR loss increases nearly linear for
a rising number of blanks, the slope is given by 𝐾 when
neglecting the ICI part 𝐾(1−𝐾) in the denominator of (23).
For high SNR values, this factor cannot be neglected any
longer, leading to a non-linear loss of the SNR with high losses
even when blanking only few samples. This result stresses
the importance for achieving low SNR working points when
designing systems with BN to cope with expected impulsive
interference, e.g. by applying a strong channel coding.

V. ADAPTION OF RECEIVER

Beside the easy prediction of the performance with BN,
the closed-form expression for the modified SNRBN helps us
to adapt our receiver to the BN. First, the demodulation is
affected. As the useful signal 𝑆𝑘 is attenuated by the factor 𝐾,
the received symbols are shifted with respect to the decision
boundaries of the modulation scheme. For QPSK this makes
no difference, as the information is contained only in the
phase, and the multiplication with the real factor 𝐾 induces
no phase shift. However, when thinking about higher order
modulation, e.g. 16QAM, the received symbols after the BN
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Fig. 4. SNR loss depending on the SNR and number of blanks for 𝑁 = 256.

have to be scaled to the constellation diagram. When applying
a soft demodulation, mostly in terms of calculating LLRs for
the coded bits, the modified noise variance has to be taken
into account as well, as the calculation of the LLRs depends
on the probability density function for the transmitted symbols
𝑆𝑘, given the received symbols 𝑅𝑘

𝑝 (𝑆𝑘∣𝑅𝑘) =
1

2𝜋𝜎2
𝑛

⋅ exp
(−∣𝑅𝑘 − 𝑆𝑘∣2

2𝜎2
𝑛

)
. (25)

When adapting the receiver, the noise power 2𝜎2
𝑛 has to be

replaced by the distortion power Var(𝐷𝑘), which follows also
a Gaussian distribution. In addition, the received symbols 𝑅𝑘

have to be replaced by the symbols 𝑌𝑘 after the BN and the
constellation points 𝑆𝑘 alter to the attenuated ones 𝑆′

𝑘. This
leads to the adjusted probability density function

𝑝 (𝑆′
𝑘∣𝑌𝑘) =

1

𝐾(1−𝐾) + 2𝜋𝜎2
𝑛𝐾

⋅exp
( −∣𝑌𝑘 −𝐾 ⋅ 𝑆𝑘∣2
𝐾(1−𝐾) + 2𝜎2

𝑛𝐾

)
.

(26)
Especially for heavily varying numbers of blanks from OFDM
symbol to OFDM symbol, this incorporation of the modified
noise will lead to correct reliabilities for the obtained LLRs,
depending on the number of blanks per OFDM symbol.

The beneficial influence of adapting the demodulation is
depicted in Fig. 5. To incorporate the effect of shifting the
constellation diagram, 16QAM was applied as modulation
scheme. For covering the effect of correct reliabilities for the
different LLRs, the number of blanks in an OFDM symbol
varies between 𝑁ℬ = 0, ..., 50 blanks, distributed uniformly.
Again, 𝑁 = 256, a transmission over an AWGN channel and
channel coding with 𝑟 = 1/2 has been applied. Especially at
low BER the beneficial influence of adapting the demodulation
turns out. While at BER = 1 ⋅ 10−2, the gain when adapting
the demodulation is only 1 dB, at BER = 1 ⋅ 10−3 a gain of
3 dB can be achieved by adapting the receiver.

For realistic transmission channels, a channel estimation
scheme like Wiener filtering is common. In our considerations,
it is split up into an interpolation in time direction and a sub-
sequent interpolation in frequency direction. Wiener filtering
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relies on the knowledge of the channel statistics [13] [14].
Given the channel statistics, one can derive the auto-covariance
function R𝐻̃𝐻̃ between the different pilot symbol positions 𝑙′.
For the interpolation in time direction, it is given by

R𝐻̃𝐻̃ =

⎛
⎜⎜⎝
𝑅𝑡;(𝑙′1−𝑙′1)+

1/SNR . . . 𝑅𝑡;(𝑙′1−𝑙′
𝑃𝑡

)

...
. . .

...
𝑅𝑡;(𝑙′

𝑃𝑡
−𝑙′1) . . . 𝑅𝑡;(𝑙′

𝑃𝑡
−𝑙′

𝑃𝑡
)+1/SNR

⎞
⎟⎟⎠ .

(27)
Again, the regular SNR can be replaced by the modified
SNRBN after the BN to improve the results of the channel
estimation as well. However, one should keep in mind that the
distortion 𝐷𝑘 for different subcarriers in one OFDM symbol
is no longer uncorrelated, as the BN affects all subcarriers
in the same way, which has to be taken into account. For
the interpolation in frequency direction, this will lead to
dependencies of the distortion at different pilot symbols, i.e.
contributions of SNRBN not only on the main diagonal of (27).
It does not affect the interpolation in time direction, as the
blanking in one OFDM symbol does not depend on the
other OFDM symbols. In Fig. 6 the MSE of the channel
estimation is given for Wiener filtering and a typical two-
path scenario, comprising a strong line-of-sight path and an
attenuated, reflected path. It becomes obvious that adapting
the SNR in the CE significantly improves the performance,
especially for high SNR values.

VI. CONCLUSION

In this paper we investigated the influence of a blanking
nonlinearity onto OFDM systems. First, we derived closed-
form expressions for the influence onto the useful OFDM
signal as well as for the induced interference by the blanking
nonlinearity. The final outcome of the investigation was a term
for the SNR of an equivalent transmission without blanking.
These results were compared with the extended Bussgang’s
theorem, exposing the differences between both approaches. In
a second step, we confirmed the validity of the equivalent SNR
by means of simulation, which show a good match with our
theoretical results. Subsequently, we had a look at the impact
of the blanking nonlinearity on the receiver and we showed
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Fig. 6. Influence of adapting the channel estimation to the blanking
nonlinearity.

how the receiver has to be adapted. Finally, the beneficial
influence of this adaption was validated by means of BER
and MSE simulations.
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